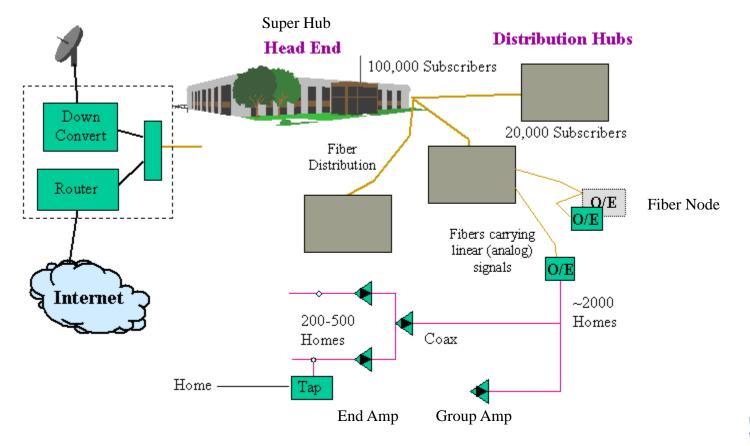


Gabor Major

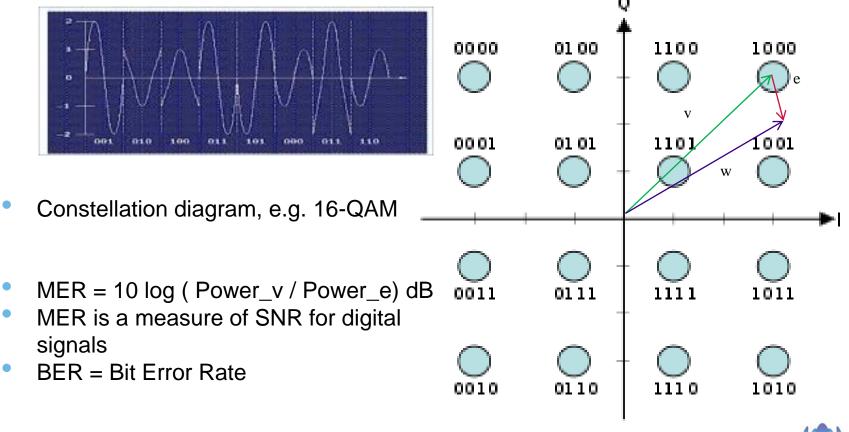
UPC Magyarorszag Kft. Liberty Global Inc.


Agenda

- Introduction
 - Signal transmission
 - Provisioning flow
- Docsis protocol
 - Docsis management traffic
 - QoS
 - Baseline privacy
 - Dynamic operation
- Docsis 3.0
 - Channel Bonding
 - BSoD
- Docsis 3.1

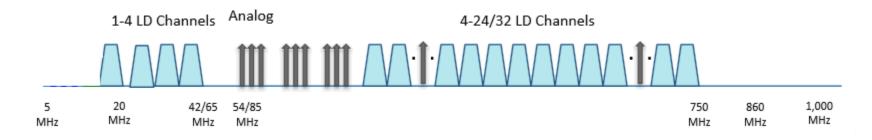
Introduction – HFC infrastructure

- DOCSIS: Data Over Cable Service Interface Specification
- CATV system was originally designed for one-way communication, has a tree topology, DOCSIS adds High Speed Data capability to this existing HFC plant.


DOCSIS evolution

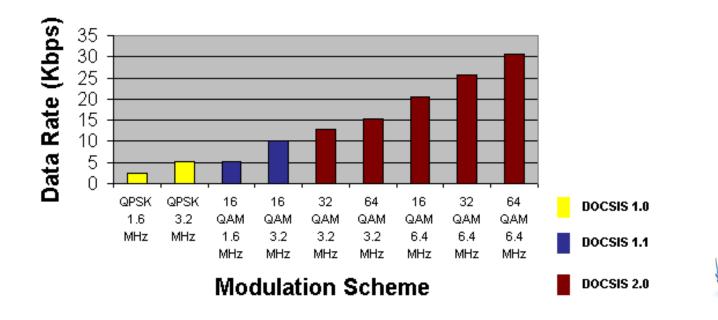
- DOCSIS: Created to fit in the NTSC channel plan
 - 6 MHz wide downstream channels
- EuroDocsis: Created to fit in the PAL channel plan
 - 8 MHz wide downstream channels
- Docsis 1.0 (1997):
 - Upstream TDMA
 - Only Best effort traffic
- Docsis 1.1 (1999):
 - Service flows with QoS for VoIP
 - BPI+
- Docsis 2.0 (2001):
 - A-TDMA: Higher upstream modulations (up to 64QAM) and wider channels (6.4MHz)
- Docsis 3.0 (2006):
 - Channel bonding 4, 8 or even 24 downstream channels
- Docsis 3.1 (2013):
 - Extended spectrum, new multiplexing

Physical layer – transmission

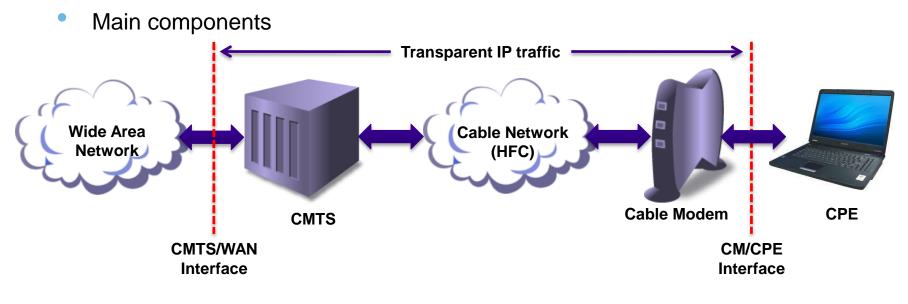

• QAM signal: Quadrature amplitude modulation - phase and amplitude shifting $s(t) = I(t) * sin(2 * \pi * f_o * t) + Q(t) * cos(2 * \pi * f_o * t)$

Physical layer - downstream

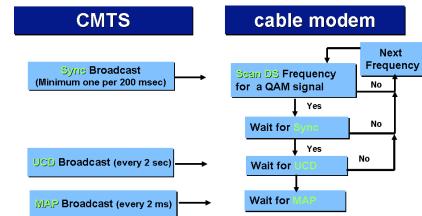
Spectrum is split into two distinct range : upstream and downstream


- Downstream (112 MHz 750/860MHz)
 - CMTS to CM, one speaker, multiple listener
 - Standard modulation is 256QAM in the downstream this is 8 bits/symbol
 - 8 MHz wide channels in Euro DOCSIS
 - 55.62 Mbit/s raw throughput per channel (50Mbps usable throughput)

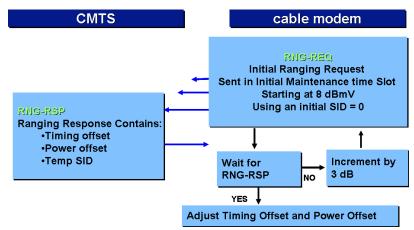
Physical layer - upstream

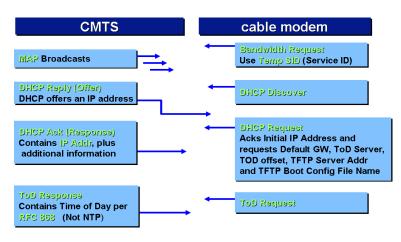

- Upstream (5 MHz 65MHz)
 - CM to CMTS, Multiple speaker, one listener
 - Modulation 16 or 64QAM
 - Channel width can be 0.8, 1.6, 3.2 or 6.4 MHz
 - employs a deterministic access method (A-TDMA) so it is mainly Collision Free protocol

Data Rates By Modulation and Channel Width



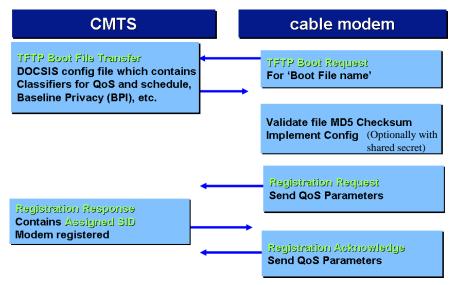
Modem boot-up


• (1) Initialization



Modem boot-up (2)

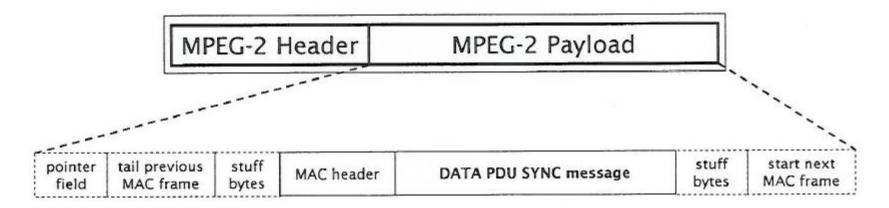
• (2) Ranging


• (3) Obtain IP and time

Modem boot-up (3)

• (4) Modem configuration and registration

- (5) Baseline Privacy (BPI/BPI+) : Establish encryption and decryption keys:
 - KEK: Key encryption key
 - TEK: Traffic encryption key

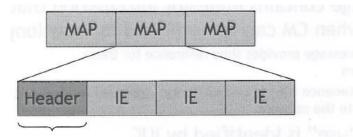

Agenda

- Introduction
 - Signal transmission
 - Provisioning flow
- Docsis protocol
 - Docsis management traffic
 - QoS
 - Baseline privacy
 - Dynamic operation
- Docsis 3.0
 - Channel Bonding
 - BSoD
- Docsis 3.1

Synchronization

- SYNC message:
 - time synchronization sent by CMTS at periodic interval to provide common time reference to all CM's

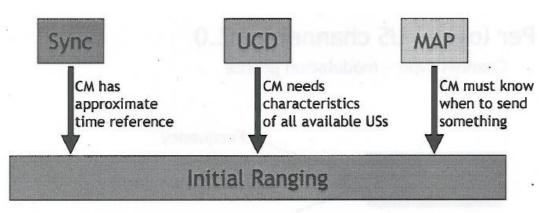
Sent at a periodic interval of max. 200 ms.


Upstream Channel Descriptor

- Describes RF Characteristics of the US channel
 - Frequency
 - Modulation
 - Channel-width (symbol rate)
- Set of burst profiles corresponding with Interval Usage Code (IUC):
 - Request (1)
 - Request w/ contention data (2)
 - Initial maintenance (3)
 - Periodic ranging (4)
 - Short data (5)
 - Long data (6)
 - Advanced short data (9) only Euro-DOCSIS 2.0
 - Advanced long data (10) only Euro-DOCSIS 2.0
 - UGS (11) only Euro-DOCSIS 2.0
- Sent at an interval of max. 2s

US bandwidth allocation Map (MAP)

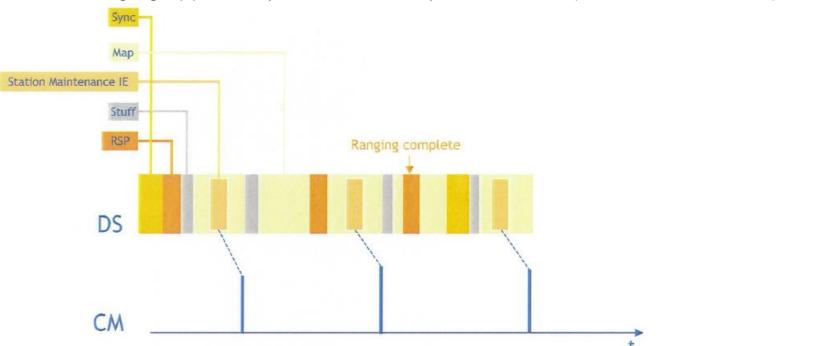
Allocate bandwidth to modems at an interval of tens of ms


- Start time first mini-slot
- Acknowledge time
 - Identifies last time-slot CMTS has processed before building this MAP
- Channel ID
 - · US channel to which map refers

- MAP MAP MAP Header IE IE IE
- SID
 - · Identifies user of time slot (can be broadcast)
- IUC
 - Identifies use of time slot (initial ranging, periodic ranging, data, ...)
- Offset
 - Number of mini slots in time slot

Ranging

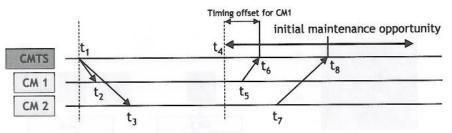
Initial ranging


- Periodic Ranging
 - Correction on the time offset
 - Fine tuning the transmit frequency
 - Correction on the transmit power

Periodic tuning of timing, transmit frequency and transmit power ensures continued reliable communications between CMs and CMTS.

Periodic Ranging

• Modem ranging opportunity at least 1 every T4 seconds (between 30 and 35)



- CMTS should respond to a RNG-REQ within T3 period (between 50 and 200 ms)
- Reinit MAC after T4 timeout or 16 x T3 timeouts

Timing offset

- Timing offset is an indication of round-trip delay between CMTS and CM plus other delays (DS interleaver, processor, internal modem)
- Timing offset unit [tick/64], 1 tick is 6.25μs
- Maximum supported one-way delay is 800 μs or 160 km (timing offset ~16384)
- CMTS measures timing offset:

 $t_1 \hbox{:} CMTS$ transmits a MAP containing starting boundary t_4 of initial maintenance transmit opportunity

t2, t3: CM receives MAP

 t_5 , t_6 : CM 1 transmits ranging request and CMTS receives request

t7, t8: CM 2 transmits ranging request and CMTS receives request

 When CMTS has incorrect timing offset values, modems may get unusable transmit opportunities in the past.

RNG-REQ

- DOCSIS 11.. = FCType: MAC Specific (0x03) ..00 000. = FCParm: Timing Header (0x00) 0 = EHDRON: Extended Header Absent MacParm: 0x00 Length after HCS (bytes): 28 Header check sequence: 0xea1d Mac Management Destination Address: Casa_02:14:0f (00:17:10:02:14:0f) Source Address: Scientif_9e:40:25 (00:16:92:9e:40:25) Message Length - DSAP to End (Bytes): 10 DSAP [0x00]: 0x00 SSAP [0x00]: 0x00 Control [0x03]: 0x03 Version: 1 Type: Ranging Request (4) Reserved [0x00]: 0 Ranging Request Service Identifier: 70 Downstream Channel ID: 1 Pending Till Complete: 0

RNG-RSP

+	DOCSIS
+	Mac Management
	Ranging Response
	Service Identifier: 72
	Upstream Channel ID: 2
	Timing Adjust (6.25us/64): 1640
	Power Level Adjust (0.25dB units): 0
	Offset Freq Adjust (Hz): 0
	Transmit Equalisation Adjust: 08011800000000000000000000000000000000
	Ranging Status: Continue (1)

DOCSIS
Mac Management
🗆 Ranging Response
Service Identifier: 72
Upstream Channel ID: 2
Timing Adjust (6.25us/64): 0
Power Level Adjust (0.25dB units): 0
Offset Freq Adjust (Hz): 0
Transmit Equalisation Adjust: 08011800000000000000000000000000000000
Ranging Status: Success (3)

CoS versus QoS

- EuroDocsis 1.0 -> Class of Service
 - No guarantee of service in terms of bandwidth and delivery
 - Only "best effort"
- EuroDocsis 1.1 and higher -> Quality of Service
 - Guarantees on transmission rates, jitter and other characteristics
 - Scheduling types
 - Upstream
 - Best Effort
 - Non-Real-Time Polling
 - Real-Time Polling
 - Unsolicited Grant Service
 - Unsolicited Grant Service w/ Activity Detection
 - Downstream
 - "Undefined" , vendor specific behavior

Service Flows & Classifiers

- Service Flow
 - A QoS parameter set is assigned to a Service Flow (virtual channel)
 - Service flow types:
 - Static Provisioned in (modem) configuration file
 - Dynamic
 - Created as needed, on demand, e.g.: voice call
 - DOCSIS DSx messages, like Addition, Change, Deletion
 - Primary service flows must always be defined, used for MAC-management signalling
- Classifier
 - Set of matching criteria applied to each packet entering cable network
 - Ethernet LLC criteria
 - IP criteria (L3 and L4)
 - VLAN criteria
 - Matching packets get classified onto referenced Service Flow
 - Different classifiers in US and DS

DHCP, TFTP

- Cable modem obtains an IP address via DHCP protocol (4 way handshake)
 DISCOVER, OFFER, REQUEST, ACK
- In DHCP Offer both TFTP server address and bootfile name are provided
- Cable modem download bootfile from TFT server
- Bootfile is a TLV encoded configuration file
 - Upstream/downstream service flows and classifiers
 - SNMP MIB Objects
 - BPI settings
 - MIC (Message Integrity Check)
- TLV : Type Length Value
 - E.g.: 0x0a 0x01 0x01

Registration

- 3 way handshake
 - CM parses the bootfile, and based on its content generates REG REQ message containing:
 - Modem capabilities
 - Baseline privacy parameters
 - Classifiers/Service flows
 - MIC (Message Integrity Check)
 - CMTS sends REG RSP to cable modem
 - Assigned IDs of Classifiers and Service Flows
 - Response code (okay = 0)
 - In Docsis 3.0 mode Transmit and Receive Channel Sets
 - CM accepts (or denies) the response by sending REG ACK

REG-REQ

```
Registration Request
  Service Identifier: 72
 - TLV Data
   3 Network Access: On
   18 Max # of CPE's: 2
   28 Max # of Classifiers: 20
   29 Privacy Enable: Enable
   17 Baseline Privacy Encoding: 0104000000a0204000000a0304000002580404000000a...
  VSIF Encodings (Unknown)
  VSIF Encodings (Unknown)
  = 22 Upstream Packet Classifier (Length = 27)
     .1 Classifier Ref: 2
     .3 Service Flow Ref: 1
     .5 Rule Priority: 16
     .6 Activation State: Active
   = 9 IP Classifier (Length = 12)
      ...3 Source Address: 10.0.0.0 (10.0.0.0)
      ..5 Source Mask: 255.0.0.0 (255.0.0.0)
```


REG-REQ (2)

```
□ 24 Upstream Service Flow (Length = 25)
   .1 Service Flow Ref: 2
   .6 QOS Parameter Set: Apply to Provisioned, Active and Admitted Sets; Admission Control and Activate
   .7 Traffic Priority: 1
   .8 Maximum Sustained Traffic Rate (bps): 128000
   .15 Scheduling Type: Best Effort Service (0x0000002)
 In .16 Request/Transmission Policy: 0x000008a
     Service flow MUST NOT use priority multicast request opportunities
     Service flow MUST NOT use Request/Data opportunities for data
     Service flow MUST NOT suppress payload headers
6 CM MIC: b68e45abf24baf5fdb72d3230934efc7
 7 CMT5 MIC: dcd8cac167632534ed9b85f0361bb216
□ 5 Modem Capabilities Type (Length = 39)
   .1 Concatenation Support: On
   .2 Docsis Version: Unknown (2)
   .3 Fragmentation Support: On
   .4 PHS Support: On
   .6 Privacy Support: On
   .7 # Downstream SAIDs Supported: 15
   .8 # Upstream SAIDs Supported: 16
   .10 Xmit Equalizer Taps/Sym: 1
   .11 # Xmit Equalizer Taps: 24
   .12 DCC Support: On
   .15 Expanded Unicast SID Space: On
   .... 0 = .16 Ranging Hold-Off (CM): Off (0)
   .... .... .... .... .... .1.. = .16 Ranging Hold-Off (eMTA or EDVA): On (1)
   .... 0... = .16 Ranging Hold-Off (DSG/eSTB): Off (0)
 8 Vendor ID: 001692
 12 Modem IP Address: 10.9.133.134 (10.9.133.134)
```


REG-RSP

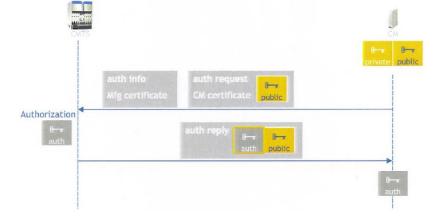
```
    Mac Management

Registration Response
Service Identifier: 72
Response Code: okay/success (0)
TLV Data
```


REG-ACK

🗄 Mac Management

 Registration Acknowledge Service Identifier: 72 Response Code: okay/success (0) TLV Data


Baseline Privacy Interface

- BP+ Key management (Docsis 1.1 and higher) With Authentication
- Docsis and/or EuroDocsis root certificate must be (pre)installed on the CMTS

Manufacturer certificates may be manually added on CMTS

- CM MAC address tampering is detected
- KEK and HMAC (hash key) are generated from Auth Key
- Symmetric encryption with TEK of payload data traffic
- Typically TEK lifetime is few hours, while KEK lifetime is few days Time synchronization is required between CM and CMTS (time and NTP)

BPKM Key Request

```
    DOCSIS
    Mac Management
    BPKM Request Message
        BPKM Code: Key Request (7)
        BPKM Identifier: 2
        BPKM Length: 205
    BPKM Attributes
    S CM Identification
        1 Serial Number: 106576270
        2 Manufacturer Id: 001692
        4 RSA Public Key: 30818902818100c643728c42e37c95882a0fea9f6e1c55b8...
        3 Mac Address: Scientif_9e:40:25 (00:16:92:9e:40:25)
        10 Key Sequence Number: 1
        12 SAID: 72
        11 HMAC Digest: 8f0ad5d7c8bfb3ab853f742c9c2b3208c5f85e61
```


BPKM Key Reply

+	DOCSIS
+	Mac Management
-	BPKM Response Message
	BPKM Code: Key Reply (8) BPKM Identifier: 2 BPKM Length: 104
-	BPKM Attributes
	10 Key Sequence Number: 1 12 SAID: 72 I 13 TEK Parameters
	<pre>8 Traffic Encryption Key: 3e85cbde6545857f 9 Key Lifetime (s): 21600 10 Key Sequence Number: 1 14 CBC IV: 31c9598238add010</pre>
	□ 13 TEK Parameters
	8 Traffic Encryption Key: 1ce633015567b34d 9 Key Lifetime (s): 43200 10 Key Sequence Number: 2 14 CBC IV: d7c9df1b7e9b5d85
	11 HMAC Digest: 0807c8f419423cecc84a813ff66ea15ae1a1addc

Dynamic Operation

- US and/or DS channel changes within MAC domains, during operation
- DOCSIS 2.0: Dynamic channel change
 - Initialization techniques
 - Reinitialize MAC Long interruption is not acceptable for dynamic load balancing
 - Broadcast/Unicast/Direct Move to new channel without interruption
- DOCSIS 3.0: Dynamic bonding change
 - Add or remove channels from channel set during operation

DCC-REQ

DOCSIS
🕀 Mac Management
DCC-REQ Message
Transaction ID: 32792 Up Channel ID: 2
Initialization Technique: Broadcast Init RNG on new chanbefore normal op (1)
UCD Substitution: 02020401010110020402c895e00350ccccccc0df20f0f0f
UCD Substitution: 680402000005010c06014b070201520801060901080a0102
7 DCC-REQ Service Flow Substitution Encodings (Length = 16)
SF Sub - SFID Current Value: 383
SF Sub - SFID New Value: 383
SF Sub - SID Current Value: 72
SF Sub - SID New Value: 72
7 DCC-REQ Service Flow Substitution Encodings (Length = 16)
SF Sub - SFID Current Value: 292
SF Sub - SFID New Value: 292
SF Sub - SID Current Value: 73
SF Sub - SID New Value: 73
Auth Key Sequence Number: 1
HMAC-DigestNumber: 5eda296d93dd57bcd9de21b09447c4b5f686e03b

DCC-RSP

DOCSIS

🗄 Mac Management

DCC-RSP Message

Transaction ID: 32792 Confirmation Code: 180 Auth Key Sequence Number: 1 HMAC-DigestNumber: cf32da177762a6de6a235283710c3e33d1b3a608

DCC-ACK

DOCSIS

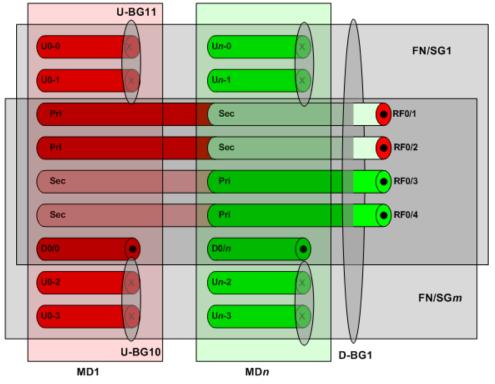
DCC-ACK Message

Transaction ID: 32792 Auth Key Sequence Number: 1 HMAC-DigestNumber: bb1564318978f2c9392ed894f70090da18577eac

Agenda

- Introduction
 - Signal transmission
 - Provisioning flow
- Docsis protocol
 - Docsis management traffic
 - QoS
 - Baseline privacy
 - Dynamic operation
- Docsis 3.0
 - Channel Bonding
 - BSoD
- Docsis 3.1

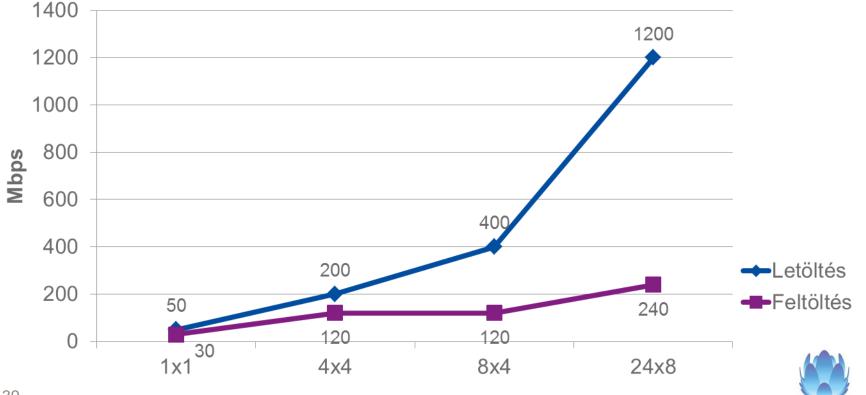
Terminology


- MAC Domain
 - Set of downstream and upstream channels that belong together
- Primary downstream
 - Carries SYNC, MAP, UCD for Docsis 3.0 modem
 - Carries new Docsis 3.0 MDD (MAC Domain Descriptor)
- Secondary downstream
 - Carries no Docsis signalling for the MAC domain it is secondary for.
- DCID and UCID
 - Downstream and Upstream Channel ID
 - Unique for each channel in a MAC domain
 - Used to identify which channels a modem can use
- Channel bonding
 - Use multiple downstream and/or upstream channels concurrently to increase speed
 - Sequence numbers in extended header allows proper ordering of the

³⁶ packets

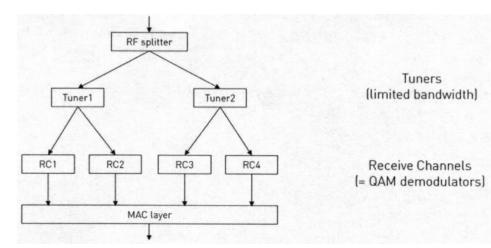
Service Groups

- Docsis 3.0 requires Service-Groups (SG) configurations
 - SG corresponds to a Fiber Node (FN)
 - An SG can span multiple MAC domains (MD)
- A DS Channel is primary in at most 1 MAC domain and secondary in others
- A downstream bonding group can encompass both primary and secondary channels


MAC Domain Descriptor (MDD)

- Fiber Node configuration table info allows CMTS to generate MDD messages
- MDD Messages describe:
 - MAC Domain configuration, including DCID
 - Service Groups in the MAC domain
- Periodically transmitted on every downstream channel, but a modem will only interpret DOCSIS signalling on its primary downstream.
- MDD received on a channel
 - Carries DCID for that downstream
 - Carries TLV (Type Length Value format) that provide information required by modem during ranging/registration
 - Provisioning mode (IPv4, IPv6, APM, Dual)
 - Upstream frequency range
 - Security

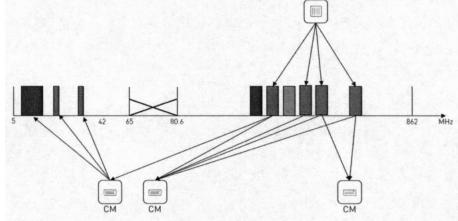
Downstream Channel bonding


- Docsis 3.0 requires at least 4 DS bonded channels to be supported in a 64MHz wide capture range
- Theoretical maximum speed per cable modem depends on the number of channels

upc

Receive Channel Profile (RCP)

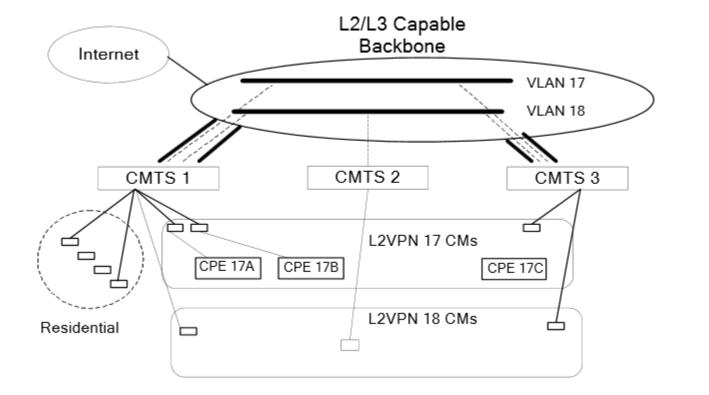
• CM bonding capabilities are limited by its tuner


- Older tuner's receive
 window is typically
 96MHz
- New modems can see the full spectrum

- During registration the CM signals these capabilities to the CMTS using RCP message
- Standard RCP defined
 - Modem must support at least 1 standard "CLAB-8M-004"

Upstream Channel bonding

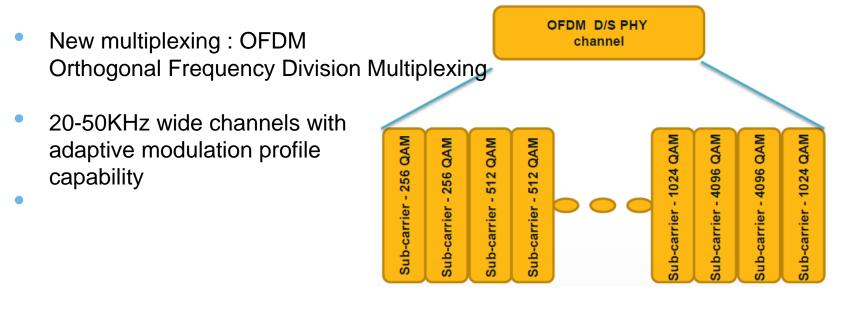
 Channels with different characteristics can be bonded within an upstream bonding group



- Each Service flow is assigned to an US bonding group
 - Primary service flow: US#1, US#2, US#3
 - Voice UGS flow: US#1
- CM signals upstream capabilities to CMTS during registration
 - Minimum of 4 transmitters of 6.4MHz must be supported
 - Upstream channel must be able to be anywhere in the 5 to 65 MHz band.
 Note: American Docsis 3.0 version allows 85MHz extended range
 - Maximum difference between channel transmit powers of 12dB

- Business Services Over DOCSIS extension to core DOCSIS specification
- Together with MPLS backbone it provides transparent E2E L2 service
- Tagging/tag removing are done by the CMTS based on a predefined value in cable modem's bootfile

upc


Agenda

- Introduction
 - Signal transmission
 - Provisioning flow
- Docsis protocol
 - Docsis management traffic
 - QoS
 - Baseline privacy
 - Dynamic operation
- Docsis 3.0
 - Channel Bonding
 - BSoD
- Docsis 3.1

DOCSIS 3.1 new features

- New specification released in October 2013
- Aim is 10Gbps+ download és 1Gbps+ upload speed
- Extended spectrum, up to 200 MHz in upstream, and up to 1.2 GHz in downstream

DOCSIS 3.1 new features (2)

 Due to the higher level of modulation (4096 QAM instead of 256QAM) 12 bits are transmitted in one symbol instead of 8 bits. +50% efficiency

 New forward codeword error correction algorythm : LPDC (Low Density Parity Check)

Thank you!

